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Abstract

Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms

leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-conti-

nental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living

trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and

those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the

mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due

to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were

found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms

and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term

growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity

within a species, although this result may also reflect high variability in sampling design among sites. The intersite

and interspecific variability in growth patterns before mortality provides valuable information on the nature of the

mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality.

Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or

bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic perfor-

mance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be

a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angios-

perms and in case of intense drought or bark-beetle outbreaks.

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 1675–1690

1676 M. CAILLERET et al.



Keywords: angiosperms, death, drought, growth, gymnosperms, pathogens, ring-width, tree mortality

Received 8 June 2016; revised version received 12 September 2016 and accepted 11 October 2016

Introduction

Accelerating rates of tree mortality and forest die-off

events have been reported worldwide (e.g., van Mant-

gem et al., 2009; Allen et al., 2010). These trends have

been attributed to direct and indirect impacts of

drought stress and higher temperatures (e.g., higher

competition intensity as a result of growth enhance-

ment in environments limited by low temperature; Luo

& Chen, 2015) and are expected to continue as a result

of further global warming and drying in many regions

(Cook et al., 2014; Allen et al., 2015). Tree mortality has

large impacts on both short-term forest functioning

(e.g., forest productivity, water and carbon cycles;

Anderegg et al., 2016b) and long-term ecosystem

dynamics (Franklin et al., 1987; Millar & Stephenson,

2015), yet our physiological understanding of the mech-

anisms leading to mortality and our ability to predict

mortality and its impacts over space and time is still

limited (McDowell et al., 2013; Hartmann et al., 2015).

As a result, most dynamic vegetation models that aim

to project future forest development are still based on

simple mortality algorithms despite their high sensitiv-

ity to mortality assumptions (Friend et al., 2014; Bircher

et al., 2015). In addition, reliable indicators that can be

used to predict individual mortality in the field from

local to regional scales are lacking (McDowell et al.,

2013).

In contrast to most mortality events caused by short-

term external disturbances, such as windthrow, fire or

flooding, stress-induced mortality is usually preceded

by changes in tree function (e.g., hydraulic conductiv-

ity, carbon assimilation) and structure (e.g., individual

leaf area) (McDowell et al., 2011; Seidl et al., 2011; but

see Nesmith et al., 2015 for potential influence of prefire

growth on postfire mortality). In this context, focusing

on the temporal variations in radial stem growth rates

is pertinent as they reflect changes in individual vital-

ity, productivity, and carbon availability (Dobbertin,

2005; Babst et al., 2014; Aguad�e et al., 2015). Although

the interannual variability in wood growth is primarily

driven by cambial phenology and activity (Delpierre

et al., 2015; K€orner, 2015) – thus by water availability,

air temperature, and photoperiod – several studies

have shown the utility of radial growth data for pre-

dicting tree mortality probability (e.g., Pedersen, 1998;

Bigler & Bugmann, 2004; Wunder et al., 2008; Cailleret

et al., 2016). Most studies used ring-width data as they

allow for a long-term (i.e., >20 years) retrospective

quantification of annual growth for numerous individ-

uals, sites, and species (e.g., Anderegg et al., 2015a).

Such data offer the further advantage of combining a

large sample size (in contrast to, for example, dendrom-

eters) with a annual temporal resolution that is helpful

to estimate the year of tree death and to detect immedi-

ate reactions to intense stress such as drought or insect

defoliation (Dobbertin, 2005), unlike forest inventories

with multiyear remeasurement periods. Moreover,

ring-width data are usually available for almost the

entire life span of a tree, which is valuable for exploring

long-term and delayed effects of stress on mortality

(see Bigler et al., 2007) that would not be detected using

methods such as carbon flux measurements or remote

sensing.

In most studies, dying trees showed lower radial

growth rates prior to death than surviving ones (e.g.,

Pedersen, 1998; Bigler & Bugmann, 2004; Cailleret et al.,

2016). Despite this common pattern, a large variety of

growth patterns before mortality have been described

in the literature from abrupt or gradual growth reduc-

tions to increases in growth before death. This variabil-

ity is likely associated with differences in species’

strategies to face environmental stress, and in their car-

bon allocation patterns related to growth, defense, and

storage (Dietze et al., 2014); for example, stress-tolerant

species may survive for many years with low growth

rates under continuously stressful conditions (e.g., old

Pinus longaeva), while stress-sensitive species cannot

(e.g., Populus tremuloides; Ireland et al., 2014). There is

also substantial variability at the intraspecific level:

Drought-induced mortality events of Pinus sylvestris

may be preceded by fast declines (Herguido et al.,

2016), or by slow and long-lasting growth reductions

(Bigler et al., 2006; Heres� et al., 2012).
Growth patterns before death are also influenced by

the type, duration, frequency, and intensity of stress

factors that predisposed and triggered mortality. For

Picea engelmannii, dying trees had lower growth rates

than surviving trees when mortality was caused by

drought (Bigler et al., 2007), while no differences were

observed in two pine species when trees died because

of bark-beetles (Kane & Kolb, 2010; Ferrenberg et al.,

2014; Sang€uesa-Barreda et al., 2015). In case of lethal

episodic defoliation, tree death can even be preceded

by growth increases (e.g., on Tamarix spp. in Hultine

et al., 2013). Similarly, intraspecific trade-offs between

early growth rates (defined as the first 50 years of a
Correspondence: Maxime Cailleret, tel. +41 44 632 52 08, fax

+41 44 632 13 58, e-mail: cailleret.maxime@gmail.com
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tree’s life) and longevity were commonly – but not con-

sistently – observed (Bigler, 2016; but see Ireland et al.,

2014), highlighting the potential disadvantage of invest-

ment in growth instead of defenses (Herms & Mattson,

1992; Rose et al., 2009).

Considering the multifactorial character of the mortal-

ity process (McDowell et al., 2011; Aguad�e et al., 2015;

Allen et al., 2015; Anderegg et al., 2015b), and the lim-

ited number of species and sites analyzed in most ear-

lier studies, we lack a global, comprehensive appraisal

of the changes in growth rates before mortality. This is

especially relevant to the detection of variations among

sources of mortality (e.g., drought, insect outbreak),

environmental conditions, and species, and to the simu-

lation of tree mortality using growth-based models

(Bircher et al., 2015). Moreover, the available studies

applied different methodologies to derive growth–mor-

tality relationships (see Cailleret et al., 2016), which

reduces the strength of meta-analyses. Thus, we com-

piled a new pan-continental tree-ring width database

from published and unpublished datasets that include

both dead and living trees growing at the same sites.

We compare the growth rates between trees that died

and those that survived stress events. In particular, we

address the following questions: (i) Are there character-

istic changes in recent radial growth prior to mortality?

(ii) Did dead trees have higher growth rates when they

were young than surviving trees? (iii) To what extent

are these growth patterns affected by structure–function
differences between gymnosperms and angiosperms,

and by the shade and/or drought tolerance of a particu-

lar species? and (iv) Are these patterns different

depending on the main cause of mortality?

We hypothesize, on the one hand, that short-term

(i.e., <5 years) or no decline in growth before death will

occur in case of severe biotic attack (especially bark-

beetles), or in case of drought-induced embolism of

xylem conduits that impedes water transport to the

canopy and leads to tissue desiccation (‘hydraulic fail-

ure’ hypothesis; McDowell et al., 2011; Rowland et al.,

2015). On the other hand, long-term growth reductions

(i.e., >20 years) before mortality will be more likely in

response to repeated and gradually increasing environ-

mental stress such as shading or parasitism (e.g.,

mistletoe), where a slow deterioration of the water and

carbon economy may lead to tree death because of a

lack of nonstructural carbohydrates (NSC) to sustain

metabolic processes like respiration or to build defense

compounds (‘carbon starvation’ hypothesis; McDowell

et al., 2011; Hartmann, 2015). Accordingly, we expect

longer-term growth reductions in shade- and drought-

tolerant species than in stress-sensitive ones, and in

gymnosperms than in angiosperms, especially due to

the wider hydraulic safety margins of conifers (Choat

et al., 2012). We also hypothesize that trees that died

during a specific mortality event will show higher juve-

nile growth rates than surviving trees (Bigler, 2016).

Materials and methods

Tree-ring width database

We compiled tree-ring width data (RW; mm) from 58 pub-

lished and unpublished studies dealing with tree growth and

mortality and that satisfied the following constraints: (i) Mor-

tality was mainly induced by stress, and not by abrupt abiotic

disturbances such as windthrow, fire, or flooding that may kill

trees irrespective of their vitality and growth (but see Nesmith

et al., 2015); (ii) both dying and surviving trees were growing

together at the same site; and (iii) all individual chronologies

had been successfully cross-dated. Overall, the dataset ana-

lyzed here included 2970 dead and 4224 living trees growing

at 190 sites mostly in North America and Europe in the boreal,

temperate, and Mediterranean biomes (Fig. 1; Table 1; see

details in Appendix S1).

The sampling approach varied widely across studies. Tree-

ring data were derived from cores or cross-sections taken at

different sampling heights, from the base to eight meters of

height. At 30 sites (15.8% of the sites), tree-ring data were only

available for the outermost rings (i.e., partial data). Estimates

of cambial age and measures of tree diameter at breast height

(DBH) at the time of coring were missing for 58 (30.5%) and 21

(11.1%) sites, respectively, which renders these data inappro-

priate for our analyses. Trees can die during the growing sea-

son before ring formation is complete, which induces an

incomplete outermost ring. As the precise (intra-annual) tim-

ing of tree death was not available, we did not consider the

last ring of the dead trees. The year of death was defined as

the year of formation of the outermost ring, and considered as

a proxy (cf. Bigler & Rigling, 2013). At the site scale, tree mor-

tality could be synchronous (all events occurring in one year),

or spread in time over many years (the maximum range being

>100 years; Appendix S1).

A total of 36 species were included in the database, which

covered several gymnosperm and angiosperm families,

although our dataset mainly included gymnosperms (64% of

the species and 86% of the sites), with Pinaceae being the most

represented family in terms of the number of species and sites

sampled, followed by Fagaceae. Species life history strategies

were characterized using two sets of shade and drought toler-

ance indices derived from Niinemets & Valladares (2006) and

from the ForClim dynamic vegetation model (Bugmann, 1996;

details in Appendix S2). In addition, species structural traits

such as wood density (Chave et al., 2009), total and axial par-

enchyma (Rodr�ıguez-Calcerrada et al., 2015; Morris et al.,

2016), Huber value (ratio of conducting xylem area per sup-

ported leaf area; Xylem Functional Traits Database; Choat

et al., 2012) as well as species’ hydraulic safety margin (differ-

ence between minimum seasonal water potential measured in

the field and the water potential causing 50% loss of xylem

conductivity in the stem; Choat et al., 2012) were used to char-

acterize species responses to drought (see Appendix S2).

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 1675–1690
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Growth patterns before mortality

We assumed that all deaths observed for each species within a

given site and a given mortality year were consequences of

the same mortality process, while deaths that differed in time

could be the result of separate processes. Consequently,

growth patterns were analyzed for each combination species,

site, and mortality year, hereafter referred to as a ‘mortality

event’. Because of the variable methodologies used across

sites, we standardized the data among studies to better detect

consistent growth patterns. First, for each mortality event (m),

we calculated annual growth ratios (gm) between trees that

died (dying tree) and conspecific trees that survived that

specific mortality event (surviving tree) for their entire life

Fig. 1 Geographic distribution of the sites included in the tree-ring database. Sites with similar species and mortality source in close

geographic proximity (difference in latitude and longitude lower than 1°) were pooled to improve the clarity of the map; thus, the num-

ber of symbols does not equal to the number of sites considered here.

Table 1 Main characteristics of the tree-ring database (ring-width data) compiled from 58 published papers and unpublished data

(Appendix S1), showing details about the number of species and sites studied, the number of mortality events, and the number of

dying and surviving trees by group of mortality source

Drought Drought + biotic Biotic agents Others

Species Angiosperms 6 3 2 3

Gymnosperms 12 6 9 8

Sites Angiosperms 10 9 4 4

Gymnosperms 65 28 43 27

Mortality events Angiosperms 31 93 25 103

Gymnosperms 301 252 318 373

Dying trees Angiosperms 151 160 86 191

Gymnosperms 564 455 570 793

Surviving trees Angiosperms 143 565 354 293

Gymnosperms 646 629 658 936

Note that we also considered ‘surviving’ information from dying trees (when they were still alive); thus, the number of ‘surviving’

sets of information is larger than the number of surviving trees.

span up to the mortality year (Berdanier & Clark, 2016; Fig. 2).

A gm < 1 for a given year indicated that dying trees had lower

growth rates than surviving ones. Analyzing this variable was

useful to quantify relative changes in growth rate over time,

which are better linked with mortality probability than abso-

lute growth rates (Das & Stephenson, 2015), but also to

remove potential biases due to differences in sampling

schemes among studies (Cailleret et al., 2016). Second, to max-

imize sample size, gm were calculated using RW data (1496

mortality events). RW data capture geometric and size effects

(Bowman et al., 2013) that must be removed by adequate data

standardization. Thus, we only considered surviving trees

with a DBH similar to the dying tree measured at a given mor-

tality year (�2.5 cm). In cases where none of the surviving

© 2016 John Wiley & Sons Ltd, Global Change Biology, 23, 1675–1690
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trees fulfilled this condition, the corresponding mortality

event was discarded (123 events were not considered). When

not measured in the original study, DBH was estimated as

twice the sum of all previous ring-width measurements.

Direct age effects were not considered here assuming that

senescence only marginally affects tree function (Mencuccini

et al., 2014). Finally, to assess the dependency of the results to

the growth data used, gm values were also calculated using

basal area increment (BAI; mm2) for trees whose DBH was

measured (1000 mortality events).

For each of the gm time series, we calculated (i) the growth

ratio for the year before death (gf,m; f for final) and (ii) the

duration of the continuous period with a gm < 1 before tree

death (Dtg<1,m; in case of gf,m < 1) or the duration of the contin-

uous period with a gm > 1 before tree death (Dtg≥1,m; in case of

gf,m ≥ 1 (cf. Fig. 2).

Early growth rate

At each site for which tree cambial age was available, and

instead of focusing on growth patterns per se, we analyzed

the ratio in mean RW calculated for the first 50 years of

each tree’s life between trees that died and trees that sur-

vived a given mortality event (g50,m). A 50-year period has

been used in previous studies linking longevity with growth

rates during this period (see Ireland et al., 2014 and Bigler,

2016). To standardize the data and remove age effects, only

surviving trees with an age comparable to the dying one

were sampled (�2 years). When no surviving tree fulfilled

this criterion, the corresponding mortality event was not

considered. This approach has the advantage of using the

growth information from surviving trees. However, as spe-

cies-specific relationships between early growth rates and

mortality risk can be affected by methodological choices

(Bigler, 2016), we also assessed them (i) by varying the

number of years used to calculate early mean RW

(Appendix S3), (ii) using different age windows to sample

surviving trees corresponding to each dead one

(Appendix S4), and (iii) with a method that is more com-

monly used, that is, by comparing the growth rate and

longevity of dead trees only (Appendix S5).

Designation of the main factors that triggered mortality

The two major sources of mortality were determined for

each site based on the expert assessment of the authors of

each study, normally combining climatic analyses, growth

and mortality data, and the presence/absence of biotic

agents. For the present study, we grouped mortality sources

into four groups: ‘drought’, ‘biotic’, ‘drought and biotic’, and

‘others’. The first group corresponds to drought-induced

mortality caused by a single or several drought events with-

out obvious impact of biotic agents. The group ‘biotic’

includes sites in which mortality was induced primarily by

biotic factors, including bark-beetle outbreaks, intense leaf or

bud herbivory by insects, and/or fungal infection. In the

third group, the impact of biotic agents (including mistletoes

and wood-borers) was associated with drought. Finally, the

group ‘others’ included snow break, frost events, high com-

petition intensity, and cases in which mortality was induced

by a combination of causes without a clear preponderating

factor or, simply, where mortality causes were not specified.

The proportion of mortality events was uniformly dis-

tributed among these four classes ranging from 31.4% to

22.2% for the groups ‘others’ and ‘drought’, respectively

(Table 1).

Statistical analyses

As the frequency distributions of gf,m and g50,m were right-

skewed and long-tailed, that is, most of the values ranged

between 0 and 2 but values exceeding 100 were possible
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when RW values of living trees ~0.01 mm, and as the distri-

bution in Dtm was not normal, we analyzed median rather

than mean values for interpreting ‘average’ growth patterns.

To explore how growth variables differed among species

groups (gymnosperms vs. angiosperms) and mortality

sources (drought, drought and biotic, biotic, others), we fit-

ted a generalized linear mixed model for Dtm, and two linear

mixed models for gf,m and g50,m, considering these categorical

components as fixed effects. The variables gf,m and g50,m were

log-transformed to better satisfy normality of the residuals,

and we used a Poisson model with a log-link function for

Dtm as this response variable represents count data (see

Bolker et al., 2009). As these variables may change among

species and sites irrespective of the fixed effects, random

effects were estimated for the intercept with site as grouping

factor.

The variation among sites was not examined itself as we

lack specific information on their environment (e.g., climate,

soil, forest type). However, aggregating the conditional means

of the generalized and linear mixed models by species allowed

for estimating the variation in growth variables within and

among species (e.g., with species drought tolerance) irrespec-

tive of their group and of the mortality source. As data on life

history and structural traits were not available for every spe-

cies, these variables were not included as fixed effects in the

models to avoid loss of statistical power. Interactions among

species groups and mortality sources were not considered in

the final models as model fit was reduced in their presence

(higher AIC, Akaike Information Criterion). Type-III chi-

squares and type-II sum of squares variance analyses were

used to estimate the respective impact of species group and

source of mortality on Dtm as well as on gf,m and g50,m, respec-

tively. Coefficients of determination were used to assess the

percentage contribution of fixed effects alone (R2 marginal)

and both fixed and random effects (R2 conditional) for

explaining the variability in growth patterns (Nakagawa &

Schielzeth, 2013).
Finally, resampling procedures were used to assess the

dependency of mixed models estimates to the properties of

the calibration dataset and to account for the heterogeneity in

the number of mortality events per site and per species. For

each species, we randomly sampled 21 or 17 mortality events

(medians in the database for recent and early growth rates,

respectively) with replacement. Depending on the species,

the information from a given mortality event could be either

replicated (when sample size was low, e.g., for Nothofagus

dombeyi) or excluded (e.g., for Quercus rubra). This sampling

procedure was repeated 500 times and mixed-effects models

were fitted to each of these 500 datasets. With this approach,

each species has the same weight in the calibration dataset

and contributes to the same extent to the model estimates.

We also generated 500 different datasets with a bootstrap

resampling approach. In that case, the number of mortality

events was identical to the original dataset but they were ran-

domly selected with replacement, irrespective of the site or

species. Mixed models fitting and selection and variance anal-

yses were performed using the packages lme4, lmerTest,

MuMIn, and car of the open-source software R (R Develop-

ment Core Team 2015).

Results

Change in growth rates before mortality

In 83.9% of the mortality events, dying trees showed

reduced growth rates prior to death compared with

surviving trees (gf,m < 1). This reduction was fre-

quently substantial and lasted for many years

(Fig. 3a). On average, growth of dying trees in the

year before mortality (gf,m) was ca. 40% of the growth

of surviving trees with a similar DBH (median in RW

gf,m = 0.42), but gf,m was highly variable among mor-

tality events (Fig. 4). The distribution of gf,m was right-

skewed with highest frequencies between 0.1 and 0.3

(Fig. 4) and did not significantly change with the

approach used to sample surviving trees

(Appendix S6). The duration of the period with

reduced growth of dying trees (Dtg<1,m) was highly

variable from 1 to 100 years in 96% of the mortality

events, and followed an exponential-like probability

density function with a median of 19 years. Around

17% of the mortality events showed a Dtg<1 ≤ 5 years,

and 15% showed a decline period >50 years. Similar

results were obtained using BAI data (Appendix S7),

but median values of gf,m (0.39) and Dtg<1,m (18 years)

were slightly lower than with RW data. Finally, in 241

mortality events (16.1%), dying trees had higher RW

than surviving ones the year before death (gf,m ≥ 1).

For these mortality events, the increase in growth was

much more recent, as the median of Dtg≥1,m was

4 years (Fig. 4).

Differences in growth patterns before mortality across
species groups and mortality sources

The variation in gf,m and Dtm was high within species

groups and mortality groups, with the same order of

magnitude as the variation within species and sites

(quantile coefficients of dispersion; Appendix S8). As

a consequence, the fixed effects considered in the gen-

eralized and linear mixed models explained only a

small part of the variance in gf,m and Dtm (R2

marginal = 0.06 and 0.03, respectively); however, sig-

nificant differences among species groups and mortal-

ity sources could be detected (Table 2). Intersite

variability explained a larger part of the variance (R2

conditional = 0.18 and 0.26) that could be related to

interspecific differences in shade and drought toler-

ance (within species group). Results of the generalized

and linear mixed models were consistent regardless

of the data source (RW or BAI data; Appendix S9),

regardless of the properties of the calibration dataset

in terms of the distribution of mortality events per

site and species (Table 2 and Appendix S10), and
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regardless of whether dying trees were grouped per

mortality year or not (Appendix S11).

In case of drought-induced mortality, the median in

RW gf,m and Dtm predicted by the mixed-effects models

was 0.42 and 19 years, respectively (Fig. 5a), identical

to the values obtained when considering all sources of

mortality. Relative to cases in which drought was the

main source of mortality, Dtm and gf,m did not signifi-

cantly differ when drought was associated with biotic

agents. Growth reductions, however, tended to be

shorter and more intense (lower Dtm and higher gf,m,

respectively), when trees were killed by biotic agents

alone (P < 0.1; Table 2) and, particularly, when trees

were attacked by bark-beetles (P < 0.05;

Appendix S12). Trees that died because of other factors

(including interindividual competition) showed the

longest and strongest period of reduced growth before

death (predicted median in Dtm = 24 years and in gf,

m = 0.29; Fig. 5a; Table 2).

Considering all sources of mortality, the period with

reduced growth was longer and the associated reduc-

tion in growth was stronger for gymnosperms than for

angiosperms (predicted medians Dtm = 22 and

16 years, and gf,m = 0.41 and 0.53, respectively; Table 2;

Fig. 5b) and, to a lower extent, for ‘non-Quercus’

angiosperms relative to Quercus species

(Appendix S13). Interestingly, this trend occurred

whatever the mortality source, as there was no signifi-

cant interaction between the effects of species group

and mortality source (higher AIC of the mixed models

when interactions were included).

Species characteristics associated with growth patterns
before mortality

At the species level, long-term reductions in growth

(high Dtm) were mainly observed for shade-tolerant

angiosperms, shade- and drought-tolerant gym-

nosperms, gymnosperms with low wood density, and

species with a low amount of wood parenchyma (espe-

cially axial parenchyma for angiosperms; ray parench-

yma for gymnosperms) (Table 3a). Results were similar

when only drought-induced mortality was considered.

In this case, gymnosperms with a low Huber value

were also characterized by long-term growth reduc-

tions before mortality (Table 3b).

Strong reductions in growth before death (low gf,m)

were detected for species with a low amount of wood

parenchyma, for shade-tolerant angiosperms, and for

species with high hydraulic safety margin (Table 3a). In

case of drought-induced mortality, gymnosperms with

low Huber values had also stronger growth reductions

(Table 3b). The relationship between gf,m and species

drought tolerance was inconsistent, as opposite trends

were found for gymnosperms and angiosperms and

results differed depending on whether the tolerance

indices used were derived from Niinemets & Val-

ladares (2006) or from ForClim (Table 3b).

Early growth rates

Dying trees tended to have lower averaged early

growth rate than conspecific surviving ones, especially
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Fig. 3 (a) Temporal change in growth ratio between dying and surviving trees before mortality and (b) ontogenetic change in growth

ratio calculated using ring-width data (RW) and considering all mortality events. Shaded areas represent the 95% confidence intervals

of the medians from bootstrapping (1000 resamplings). [Colour figure can be viewed at wileyonlinelibrary.com]
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when a short time period is used to calculate mean

juvenile growth rate (Fig. 3b). Considering the first

50 years of a tree’s lifetime as representative of its juve-

nile phase, this trend was observed in 58.6% of the mor-

tality events (g50,m < 1; 361/617), but the median in g50,

m was around 0.93 and was not significantly different

from one (P > 0.1).

Significant differences among mortality groups were

highlighted by the generalized linear mixed models.

Early growth ratio was highest when mortality was

caused by drought alone, and lowest when it was

induced by drought combined with biotic agents and

by other factors. These differences were significant

using g50,m (Table 2), and also by averaging early

growth rate over different time windows (the number

of years fixed across species or as a function of species

life span; Appendix S3). There was a tendency toward

higher early growth ratio for gymnosperms than for

angiosperms, but this result was not consistent when

comparing different approaches to define the early

growth ratio (Appendix S3).

Considering all sources of mortality, g50,m showed a

negative relationship with species shade tolerance (both

species groups; according to ForClim’s parameters) and

with wood density and the hydraulic safety margin in

gymnosperms (Table 3a). The same trends were

observed in case of drought-induced mortality, while

for angiosperms g50,m was positively related to their

hydraulic safety margin and negatively linked with

their wood density (Table 3b).

Fr
eq

ue
nc

y

0

0.05

0.1
∆t>1,i
∆t<1,i

(a)

0 50 100 150 200
∆ti (years)

G
ro

w
th

 ra
tio

 b
et

w
ee

n 
dy

in
g 

an
d 

su
rv

iv
in

g 
tre

es
th

e 
ye

ar
 b

ef
or

e 
de

at
h 

(g
f,i

)

0

0.5

1

1.5

2

>3

Frequency
0 0.02 0.04

(b) (c)

Fig. 4 Distribution of the duration of the period with reduced or increased growth before death (a; Dtg<1,m and Dtg>1,m, respectively),
and the growth ratio the year before death (c; gf,m) and both variables (b) calculated using ring-width data. Moving from blue to yellow

to red indicates increasing density of mortality events. Red dotted lines plotted on histograms represent median values (Dt = 17 years;

gf = 0.42).
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Table 2 Summary of the fitted generalized and linear mixed-effects models for the duration of the period with reduced/increased

growth before death (Dtm), the growth rate of dying trees relative to surviving trees the year before death (gf,m), and the growth ratio

calculated for the first 50 years of each tree’s life (g50,m)

Duration of the period with reduced/

increased growth (Dtm; chi-sq.) RW,

n = 1496

Growth ratio the year before

death (gf,m; sum sq.) log(RW),

n = 1496

Early growth ratio (g50,m; sum

sq.) log(RW), n = 617

Species group (df = 1) 9.33** 5.60** 0.25 (ns)

Mortality group (df = 3) 9.67* 19.26*** 1.58*

Intercept 2.43*** [2.09 to 2.52] �0.62*** [�0.70 to �0.38] 0.02 (ns) [�0.08 to 0.11]

Gymnosperms 0.57** [0.28 to 0.71] �0.28** [�0.47 to �0.17] 0.09 (ns) [�0.01 to 0.18]

Drought–Biotic 0.08 (ns) [�0.21 to 0.47] 0.13 (ns) [�0.14 to 0.29] �0.21** [�0.29 to �0.07]

Biotic agents �0.30 (*) [�0.51 to 0.10] 0.22* [0.02 to 0.44] �0.10 (ns) [�0.17 to 0.01]

Others 0.31 (*) [0.00 to 0.68] �0.28** [�0.53 to �0.09] �0.21* [�0.36 to �0.06]

R2 marginal 0.03 0.06 0.03

R2 conditional 0.26 0.18 0.22

All variables were calculated using ring-width data (RW). A Poisson model was used for Dtm, while linear models were fitted to

log-transformed gf,m and g50,m values.

Top: For Dtm, chi-square values and significance levels of the chi-square tests of the variable effects are shown, which were derived

from type-II variance analysis. Sum of squares and significance levels of the variable effects on gf,m and g50,m were calculated using

type-III variance analysis.

Center: Estimates of regression coefficients, significance levels (in brackets), and 95% confidence intervals of regression coefficients

(in square brackets). The intercept corresponds to the reference species group (angiosperms) and the reference mortality source

(drought). Confidence intervals were calculated based on mixed-effects models fitted to 500 different datasets generated using a

random sample of 21 or 17 mortality events per species with replacement (medians in the database for recent and early growth

ratios, respectively).

Bottom: R2 marginal and R2 conditional indicate the variance explained by fixed effects and by both fixed and random effects,

respectively.

n, the number of mortality events considered in each model; df, degrees of freedom.

(ns) not significant; (*) P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 5 Differences in the distribution of the growth ratio the year before death (gt) and the duration of the period with reduced or

increased growth (Dt) predicted by the generalized and linear mixed models among groups of mortality sources (a) and between

angiosperms and gymnosperms (b). 50% of the values are included in the convex polygons (bags) whose center (median) is represented

by the large dots.
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Discussion

Based on a new tree-ring width database from temper-

ate, boreal, and Mediterranean forests, our analysis

shows that tree mortality is preceded by a growth

reduction in ~84% of the mortality events, and supports

our initial hypothesis, that is, the decrease in growth

before death is most likely stronger and longer for vari-

ous stress-tolerant gymnosperms than for some angios-

perms, and also longer when trees are affected by

repeated, mild, but gradually increasing environmental

stress such as shading rather than by a severe attack of

biotic agents.

General growth patterns before mortality

Our synthesis supports that dying trees commonly

show lower growth rates prior to death than surviving

ones (gf,m < 1). Considering all mortality events, the

decrease in growth the year before death averaged

~60% (median in gf,m ~ 0.4). This substantial growth

reduction may have been overestimated because of the

reduction in the competitive ability of dying trees,

which may have benefited the growth of surviving

individuals (Cavin et al., 2013). However, this effect

was compensated, at least partially, by the fact that the

group of ‘surviving’ trees at a given mortality event

may include trees with reduced growth that died

shortly after the event. Although growth reductions

before mortality are nearly universal, our results show

that they can be abrupt or gradual, and the duration of

the period with reduced growth (Dtm) was highly vari-

able, ranging from 1 to 100 years in 96% of the cases.

Overall, 62% of the mortality events showed reduced

growth 5–50 years preceding tree death, consistent

with previous studies (e.g., ~5 years in Bond-Lamberty

et al. 2014; 6–12 years in Wyckoff & Clark, 2002; 10–15;
years in Ogle et al., 2000; ~15 years in Camarero et al.,

2015; ~30 years in Macalady & Bugmann, 2014). These

results confirm that trees can survive a long time with

Table 3 Summary of the relationships between Dtm, gf,m, and g50,m, and species characteristics (sign in brackets; adjusted R2; and

significance of the relationship) for angiosperms (A.) and gymnosperms (G.)

no.

species

Duration of the period

with reduced/increased

growth (Dtm; RW)

Growth ratio the year

before death (gf,m; log

RW)

no.

species

Early growth ratio (g50,

m; log RW)

A. G. A. G. A. G. A. G. A. G.

(a) All mortality sources

Huber Value 4 10 0.05 �0.01 0.04 (+) 0.03* 2 7 NA 0.01

Hydraulic safety margin 7 12 0.01 �0.01 (�) 0.19* (�) 0.03* 5 8 �0.08 (�) 0.06*

Wood density 12 20 �0.05 (�) 0.07*** �0.05 �0.01 6 14 0.01 (�) 0.03 (*)

Total parenchyma 7 12 0.02 (�) 0.04* (+) 0.42** (+) 0.05** 4 8 0.13 �0.02

Axial parenchyma 7 3 (�) 0.17 (*) NA (+) 0.48** NA 4 8 �0.06 �0.01

DrTol_NV06 10 20 �0.04 �0.01 (+) 0.30** �0.01 4 13 0.07 �0.01

DrTol_FC 12 15 �0.03 (+) 0.01 (*) �0.05 �0.01 6 11 �0.08 0.00

ShTol_NV06 10 20 (+) 0.20* (+) 0.01 (*) (�) 0.32** �0.00 4 13 0.01 �0.01

ShTol_FC 12 15 �0.01 (+) 0.02 (*) (�) 0.28** �0.00 6 10 �0.21 (*) (�) 0.06*

(b) Drought-related mortality

Huber value 3 6 NA (�) 0.25*** NA (+) 0.08* 2 4 NA �0.02

Hydraulic safety margin 5 9 �0.06 �0.00 �0.07 (�) 0.03 (*) 4 7 (+) 0.36* (�) 0.11*

Wood density 9 12 �0.06 (�) 0.12*** 0.05 0.00 4 9 (�) 0.40* (�) 0.26***

Total parenchyma 5 6 �0.06 (�) 0.29*** 0.00 (+) 0.21*** 3 4 NA �0.00

Axial parenchyma 5 3 (�) 0.32* NA (+) 0.74*** NA 3 4 NA (�) 0.18*

DrTol_NV06 7 11 �0.07 �0.01 (+) 0.27* �0.01 3 8 NA (�) 0.05 (*)

DrTol_FC 9 8 0.04 (+) 0.15*** 0.02 (�) 0.11** 4 6 0.05 �0.02

For each species-specific variable, linear models were fitted to the conditional means (random effect of the site aggregated by spe-

cies) of the generalized and linear mixed models. gf,m and g50,m were log-transformed. Models were not fitted (NA) when data were

available for fewer than four species (no. species).

The hydraulic safety margin was measured at water potential corresponding to 50% loss of xylem conductivity. Drought and shade

tolerance parameters (DrTol and ShTol) were available from Niinemets and Valladares (2006; NV06) and from the ForClim forest

model (Bugmann, 1996; FC).

Significant relationships are in boldface. (*) P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001. (�): negative relationship; (+): positive rela-
tionship.
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low growth, and emphasize the role of accumulated

stress or slow-acting processes (e.g., competition) in

tree mortality (Das et al., 2008). However, it is notice-

able that in 18% of the mortality events, trees died after

a fast (≤5 years) growth decline in comparison with

trees that survived, highlighting quick tree responses

to intense stress. In 19% of the mortality events, trees

died after experiencing only a slight decrease or even a

short-term increase in growth (gf,m > 0.9). Similar

observations are rather rare in the literature (but see

Ferrenberg et al., 2014; Rowland et al., 2015; Berdanier

& Clark, 2016; Herguido et al., 2016) and indicate either

that radial growth can be prioritized until the point of

death irrespective of environmental stress, or that

stress can be strong enough to kill trees without any

impact on the carbon budget and its allocation to

growth.

In addition to this general pattern, a wide range of

growth patterns (Dtm and gf,m) within mortality sources,

within species, and within sites was observed. This

variability likely reflects (i) the classification of mortal-

ity into four broad groups, disregarding the multifacto-

rial character of mortality in many cases and the

inherent complexity of mortality processes (Allen et al.,

2015; Anderegg et al., 2015b), (ii) the difficult and some-

what arbitrary identification of the sources of mortality

and quantification of their respective role under field

conditions, and (iii) the high spatiotemporal hetero-

geneity in microclimate, soil, and stand density condi-

tions and pressure from biotic agents within some sites.

Even though most of the variability in Dtm and gf,m was

not explained by the categorical variables considered

here (low variance explained by the generalized and

linear mixed models), the high dimensionality of the

tree-ring database in terms of sample size, diversity of

species, and mortality causes allowed us to detect dif-

ferences among these groups. Considering that the out-

puts of the generalized and linear mixed models were

coherent no matter what methodology was used to cal-

culate growth ratios (Appendices S6, S9, and S11), and

what calibration dataset was used to fit them (Table 2;

Appendix S10), we are confident about the reliability of

our results.

Growth patterns before mortality vary among sources of
mortality

Although a stronger and longer decrease in growth

prior to death could be expected when drought was

associated with biotic agents, growth patterns under

these conditions were similar to those from trees

undergoing drought only. This may be the result of

two opposite influences of pathogens on the growth–
mortality relationships, depending on their role

within the mortality spiral (predisposing vs. con-

tributing factor; Manion, 1991). On the one hand, a

recurrence of moderate biotic attacks (e.g., insect

defoliators) and pathogen infection or parasite infesta-

tion (e.g., mistletoes or root fungi) reduce carbon,

water, and nutrient availability of individual trees,

and thus may reduce their growth over both short-

and long-term periods and predispose them to subse-

quent stress factors, and finally to mortality (Sch-

warze et al., 2003; Hartmann & Messier, 2008;

Sang€uesa-Barreda et al., 2013; Macalady & Bugmann,

2014; Oliva et al., 2014). On the other hand, massive

insect outbreaks may lead to faster tree death that is

largely decoupled from growth. Consistent with that

interpretation, the decrease in growth before death

was shorter and smaller when mortality was related

to biotic agents than by drought, and was especially

low in case of bark-beetle attacks (contributing factor;

Appendix S12).

The slower growth signal associated with mortality

induced by bark-beetle outbreaks may reflect a negative

effect of carbon allocation to growth rather than defense

on tree survival (growth–differentiation balance

hypothesis; Herms & Mattson, 1992) and could be

explained by several hypotheses. First, the disruptions

of carbohydrate transport due to phloem feeding by

bark-beetles and xylem occlusion by the fungi they

introduce (Hubbard et al., 2013) usually have major

consequences for tree functioning, leading to leaf shed-

ding and tree death within a few years (Meddens et al.,

2012; Wiley et al., 2016). Second, in the endemic phase,

bark-beetles may not preferentially attack trees with

slow growth (Sang€uesa-Barreda et al., 2015; but see

Macalady & Bugmann, 2014), but rather trees with

specific size and/or bark thickness, and with lower

defense capacities (less resin duct production; Kane &

Kolb, 2010; Ferrenberg et al., 2014). Third, considering

that tree growth is frequently sink-driven (K€orner,

2015), and that defoliation does not increase water

stress (but may actually decrease it due to lower whole-

tree transpiration), a single biotic defoliation event may

not strongly affect tree growth (but see Piper et al.,

2015).

Finally, long and strong growth reductions before

death were found when mortality was caused by nei-

ther drought nor biotic agents, or when the cause was

not specified. This group especially included trees that

died because of high competition intensity, confirming

that shading can suppress trees for a long period before

they actually die (Abrams & Orwig, 1996). However,

the effects of shading (and competition in general) and

other stress factors frequently interact (Myers & Kita-

jima, 2007; Das et al., 2016) and are difficult to disentan-

gle in field settings.
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Low, short-term growth reductions before death are more
common in angiosperms

As hypothesized, angiosperm species, and especially

Quercus species, did not commonly show long-lasting

reduced growth periods before death but rather died

after a fast decline, or even after a short-term increase

in growth before death. In contrast, gymnosperm spe-

cies commonly showed long-term and slow growth

reductions before death. Angiosperms tend to recover

quickly from extreme events, whereas gymnosperms

feature substantial legacy effects (e.g., after drought;

Anderegg et al., 2015a), which may reveal the slow but

chronic deterioration of their carbon balance and

hydraulic performance under gradual or repeated envi-

ronmental stress (Dickman et al., 2015; Pellizzari et al.,

2016). This interpretation is consistent with recent find-

ings showing that reduced NSC concentrations are fre-

quently associated with drought-induced mortality in

gymnosperms, but not in angiosperms (Anderegg et al.,

2016a). Higher growth fluctuations in angiosperms than

in gymnosperms are likely associated with a number of

attributes, including (i) high growth efficiency (Bro-

dribb et al., 2012) and productivity in fertile conditions

(Augusto et al., 2014), associated with less conservative

water use and higher stomatal conductance (Lin et al.,

2015); (ii) higher amount of wood parenchyma that

may serve to increase storage capacity of NSC and sym-

plastic water (Morris et al., 2016; Plavcov�a et al., 2016);

(iii) high capacity to resprout unlike most species in the

Pinaceae family (Zeppel et al., 2015); (iv) narrower

hydraulic safety margins (Choat et al., 2012); and possi-

bly, (v) potential capacity to refill embolized xylem con-

duits (Choat et al., 2012, 2015; but see Mayr et al., 2014

for passive hydraulic recovery in conifers). However,

because of the rather small number of angiosperm tree

species studied, we acknowledge that more research

using a larger number of species, including tropical

angiosperms, is needed to validate our hypothesis.

Similarly, growth patterns before death differed

among species according to their stress tolerance and

resistance and the related structural and functional

traits. Because of the relatively low number of the spe-

cies studied and the limited availability of functional

trait data, the correlation among traits was not captured

by the univariate analysis we used. Therefore, sufficient

care should be taken while interpreting these results.

Nevertheless, our findings provide some physiological

explanations for the differences between angiosperms

and gymnosperms mentioned above. Long-term, strong

reductions in growth before death were more fre-

quently observed for drought-tolerant species – accord-

ing to ForClim’s parameters – with wide hydraulic

safety margins, a low amount of wood parenchyma,

and low Huber values (for gymnosperms). Shade-toler-

ant species showed longer and stronger reductions in

growth before death than intolerant ones, as evident

from comparing species-specific tolerance indices

derived from ForClim and Niinemets & Valladares

(2006), confirming their ability to survive under shad-

ing for a long period (Wyckoff & Clark, 2002; Wunder

et al., 2008). Despite the probable link between wood

density and mortality risk of angiosperms (Anderegg

et al., 2016a), this trait was not associated with particu-

lar growth patterns before death.

No clear intraspecific trade-off between early growth rates
and longevity

Intraspecific trade-offs between growth rates during

the juvenile phase and tree longevity have been

observed frequently for angiosperm and gymnosperm

species, while positive relationships have been rarely

found (Black et al., 2008; Ireland et al., 2014; Bigler,

2016). In our synthesis, we did not find evidence of a

consistent trade-off in gymnosperms and in angios-

perms (Appendix S5). In 58.6% of the mortality events,

dying trees had lower early growth rates than surviv-

ing ones (g50,m < 1), especially when mortality was

caused by other agents or by drought and biotic attack

than by drought alone. Early investment in rapid

growth may provide a strong advantage under light-

limited conditions (e.g., in dense stands). However, as

highlighted by the high g50,m values in case of drought-

induced mortality and for species with low wood den-

sity, it may constitute a disadvantage under dry condi-

tions, where investment into mechanisms to increase

water uptake capacity and hydraulic function may be

favored. Similarly, promoting early growth instead of

whole-tree defenses may be a disadvantage in case of

biotic attack or insect defoliation (Rose et al., 2009), but

our analysis did not fully support this hypothesis.

As reported by Bigler (2016), methodological aspects

related to the experimental design and the sampling

strategy may explain differences in the relationship

between early growth rates and longevity among sites,

species, or studies. In our database, most of the samples

did not cover large gradients of early growth and life

span (e.g., very old trees or very rapidly/slowly grow-

ing trees are missing), mainly because of the relatively

low number of dead trees at each site and for each spe-

cies (Appendix S5). Thus, the lack of consistent trade-

off between early growth rates and longevity, and the

lack of strong differences among species and mortality

sources observed in our synthesis, likely reflects high

variability in sampling design among sites and high-

lights the need for further research on this important

topic.
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Our results show that radial growth reductions

before tree mortality are nearly universal. However,

their magnitude and the corresponding growth–mortal-

ity relationships varied among sources of mortality,

between gymnosperms and angiosperms, and among

species. These differences largely support our initial

hypothesis: Angiosperms, trees attacked by bark-bee-

tles, or stress-sensitive species (e.g., with narrow

hydraulic safety margins) typically show a short-term

growth decline prior to mortality, while long-lasting

growth reductions tend to occur in gymnosperms,

stress-tolerant species and may indicate a long-term

(chronic) deterioration of the carbon and water econo-

mies. Our analyses show that the temporal changes in

growth level before death may provide useful insights

into the mechanisms underlying tree mortality, and its

complex, multiscale processes. In addition, our results

have strong implications for the use of growth data as

early warning signal of mortality and for the simulation

of tree mortality in dynamic vegetation models. Spe-

cies- or functional type-specific growth-based mortality

algorithms may be powerful for predicting mortality

induced by multiannual stress factors and forecasting

gymnosperm death. However, for angiosperms and in

case of intense drought or bark-beetle outbreaks,

growth-based algorithms are unlikely to be predictive,

and must be complemented by physiological and/or

anatomical information.
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